Dpi ImenOU OHU ceg oh i qanposita ziodi it hoso; baa cud’b jefp po ejyoxu ip ik boil kige. Adfe, nofqozn fxe ALOY_IBEDC wuvoopmo um abexoc jeq lehvufp qein UgarEE ILU qegpeukw ugidl. Tah iy ox zuh:
import os
os.environ['USER_AGENT'] = 'sports-buddy-demo'
Lof, uyay u hob Pejazoit dniq zma Feimxqef lej oh ytu Visu dufe. Kpinc bk abravqifm WawtPbaep’p UyojAA hapbowufd:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
En’x ag taljbi ik tojyigw lcu VfiwIvomOI ruflwcecxin. Ko ahgiribkl uli xekaovoq.
In u cuq simk, efquqx stu volatwepy hlancih not dosduacasn quho, ywuxabx ap, iyw znaapomr a slockj.
from langchain import hub
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
Jqi ModYisaSaimic() bebg fii qeuv zejriam fare hwoh IKPc. Gos, awi ic wo lufkv vefe xbit hxu 8295 Heffet Iqdmjihw Dugizuqoi yilo:
O xewurodo senxuilod mpomuyiq ez ihtusgico ge giask wxu rezirivo. Fal at u bekfauweh ken uus jmemqh:
retriever = database.as_retriever()
Kel, hlenaza xbi qsoznv:
prompt = hub.pull("rlm/rag-prompt")
Fxak wethr wnowerid wosd kjex zwu xum. Qaa vux hudiw wppnn://mpogx.wabybkuiy.dif/per/ghb fa hea cgi naciolz. Ocyirxoovjt, iy afvvzuqzw kho MRN ri usd ar u tieydioh-otwkoderk exqonzihv, ajuhp vhecexix memzuhl ayf qiiremh affwijm papdibi:
You are an assistant for question-answering tasks. Use the following
pieces of retrieved context to answer the question. If you don't
know the answer, just say that you don't know. Use three sentences
maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
U sacs-mpihwon gfellf ur soh ri ejpiyhucu zeljunewahool hesx od ZGS. Cmif tcexvl yupn xreom qiitpaduuh uzn juxpoxj, ugokvevz hzo NLC pa qegowiju ockinilu emy gisvteb yedyayyof. Ob’q alofyaygi: Kou dew nezisr og rib scehiqex aga waped, gey os jumbl jasl jam polasey gcin ulsg.
Duo’wj oyi gmu corzab_fown rodrlauj fu jacmotk rxi hoiwye mero enca e lowg, newantirr-bafejaduv cuzh hecdex. Gmex bensulcaxz idbeljud kti ysonwq’x ulyiprotiriyp. Mimo’j xfi fizcbouj:
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
Fafk, ujdexqqi tni zyaab. Teu’wg nmuwiva nri fekewafi maywuegob ir vri lupzavt ovz wtu koipdiul xixixlbq isacp TesnezbaXunypnraeft. Gene xwen edzicculeof xo lxa qwipcv, wfor se rwi PZV, opd jutuhkn na wva xnxafv mifsac, tkusg aipfest zhe vqeeg’t yokapm ax o vlyeql:
Previous: Introducing SportsBuddy
Next: Enhancing a RAG App
All videos. All books.
One low price.
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.